COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Ag	School of Agricultural Sciences			
ACADEMIC UNIT	Biosystems & Agricultural Engineering				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	BAE_420	SEMESTER 4 TH			
COURSE TITLE	SOIL SCIENCE				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHING HOURS		CREDITS
Lectures		3			
Tutorials			0		
Laboratory			2		
TOTAL			5		5
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Background General Knowledge Skills development				
PREREQUISITE COURSES:	There are no prerequisite courses.				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GreekFor Erasmus students in English				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The material of the course aims at acquiring knowledge and understanding the basic concepts of SOIL. In particular, soil is studied as a means of plant growth and not as an independent natural system.

The soil determines the possibility of agricultural development of an area and participates in geomorphological and hydrological processes.

He has understood the physical properties of it.

. He has understood its chemical properties.

Has understood the mineralogical properties of it.

Has understood the role of soil organic matter.

He has understood the factors involved in his fertility.

He has understood that soil is an irreplaceable and valuable natural resource that should be treated and used with due care so that it is kept in good condition in perpetuity.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma

Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and

information, with the use of the necessary technology

Adapting to new situations Decision-makina

Working independently Team work

Working in an international environment

Working in an interdisciplinary environment

Production of new research ideas

Project planning and management Respect for difference and multiculturalism

Respect for the natural environment

Showing social, professional and ethical responsibility and

sensitivity to gender issues Criticism and self-criticism

Production of free, creative and inductive thinking

Others...

Search, analysis and synthesis of data and information, using the necessary technologies

Production of new research ideas

Respect for the natural environment

Promoting free, creative and inductive thinking

(3) SYLLABUS

- Generally about soil systems
- Soil factors (basic concepts).
- Granular soil texture.
- Mineral composition of soils (Decomposition. Primary minerals: structure and physicochemical properties thereof. Secondary minerals: structure and physico-chemical properties thereof. Oxides - iron-aluminum-manganese hydroxides). Amorphous minerals.
- Soil chemical properties (Ion exchange and their importance in plant nutrition. Degree of saturation with bases. Electric potential Z, colloid thrombosis. Soil solution and electrolytes. Soil regulation capacity).
- Soil organic matter (Humic organometallic compounds. Argylohemic complexes. Importance of organic matter).
- Physical properties of soil (Structure, porosity. Structural improvement. Soil temperature and its importance. Soil air and its importance).
- Soil morphology (Soil distribution and its description. Soil color Soil horizons and levels. Soil classification. Greek soil classes. Mapping and description of cartographic units).

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face teaching, Experiential activities, Laboratory			
Face-to-face, Distance learning, etc.	training			
USE OF INFORMATION AND	Use of ICT (power point) in Teaching			
COMMUNICATIONS TECHNOLOGY	Use of ICT (power point) in Laboratory Training			
Use of ICT in teaching, laboratory education,	Use of ICT in Communication with students (Learning			
communication with students	process support through the electronic platform e-class).			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	39		
described in detail. Lectures, seminars, laboratory practice,	lab	26		
fieldwork, study and analysis of bibliography,	UNGUIDED STUDY	30		
tutorials, placements, clinical practice, art	Study hours. Literature	30		
workshop, interactive teaching, educational	survey			
visits, project, essay writing, artistic creativity, etc.	Course total	125		
eic.				
The student's study hours for each learning				
activity are given as well as the hours of non-				
directed study according to the principles of the ECTS				
STUDENT PERFORMANCE	1. The laboratories participate by 30% in the final grade. In			
EVALUATION	order to be examined in theory, the student must have			
Description of the evaluation procedure	order to be examined in theory, the student must have			
procedure	1			

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, openended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

completed all the laboratories and have been successfully examined in them.

- 2. The main assessment criteria focus on understanding and correlating the knowledge that students gain from the course with other knowledge. Particular emphasis is placed on whether they have developed the ability to apply this knowledge to crop selection and to assess the impact of these changes on the environment. Emphasis is also placed on demonstrating critical ability and justifying the choices they make in each problem.
- 3. Evaluation is dynamic. It mainly involves problem solving. is done orally or in writing or with a combination of the two, with or without pre-examination on the basic principles of the course, with or without exculpatory advances and with other test or inventive methods, depending on the composition of the dynamics and the needs of the audience.
- 4. The above are done in the Greek language. For foreign language students (eg Erasmus students) conducted in English

(5) ATTACHED BIBLIOGRAPHY

Εδαφολογία. 2008. Κυρ. Παναγιωτόπουλος, Εκδόσεις: Άγις- Σάββας Δ. Γαρταγάνης, Θεσ/νικη