COURSE OUTLINE

I. GENERAL					
SCHOOL	School of Agricultural Sciences				
ACADEMIC UNIT	Biosystems & Agricultural Engineering				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	BAE 808 SEMESTER 8 th				
COURSE TITLE	AUTOMATIC CONTROL OF AGRICULTURAL PROCESSES				
	AND MACHINERY				
INDEPENDENT TE.	INDEPENDENT TEACHING ACTIVITIES				
if credits are awarded for separate components of the course,			WEEKLY	CDEDITC	
e.g. lectures, laboratory exercises, etc. If the credits are			TEACHING	CREDITS	
awarded for the whole of the course, give the weekly teaching			HOURS		
hours and the total credits			2		
		3			
Iutorial			Z		
TOTAL			5	5	
Add rows if necessary. The organisation of teaching and the					
	COUDSE TYPE Second head and a land				
course if the	Special background				
special background, specialised					
general knowledge, skills					
development					
PREREQUISITE	There are no prerequisite courses.				
COURSES:					
LANGUAGE OF	Greek, and in English for Erasmus students.				
INSTRUCTION and					
EXAMINATIONS:					
IS THE COURSE	Yes				
OFFERED TO					
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

- Consult Appendix A
 - Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
 - Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 - Guidelines for writing Learning Outcomes

This course is an introduction to modern state-space techniques of control system analysis and design. The basics of state feedback and observer/model-based output feedback design are presented, along with LQR, Kalman filter and LQG synthesis and an introduction to robust control.

Upon successful completion, students will have the knowledge and skills to:

- Employ state-space analysis and design techniques given the mathematical model of the process
- Use software toolboxes (such as Matlab) for control system analysis and design
- Determine the stability, controllability and observability of a system
- Compute state feedback/observer gains for given specifications
- Compute optimal state feedback/observer gains for given performance costs
- Design robust controllers for simple systems with uncertainties

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management			
information, with the use of the necessary	Respect for difference and multiculturalism			
technology	Respect for the natural environment			
Adapting to new situations	Showing social, professional and ethical responsibility and			
Decision-making	sensitivity to gender issues			
Working independently	Criticism and self-criticism			
Team work	Production of free, creative and inductive thinking			
Working in an international environment	·····			
Working in an interdisciplinary environment	Others			
Production of new research ideas	·			
In general, upon completion of this course the student will have further developed the following				
general skills (from the list above):				
Search, analysis and synthesis of data and information, using the necessary technologies				
Decision making				
Autonomous work				
Team work				

3. SYLLABUS

Lectures:

1) Review of basic notions and methods of classical Automatic Control.

2) Introduction to the state-space description of control systems. System linearization and examples

3) System modes and stability. Free and forced response, multi-input-multi-output system transfer function.

4) System controllability and state feedback stabilization.

5) Set-point following and constant disturbance suppression.

6) Linear Quadratic Regulator.

7) System observability and state observer design.

8) Output feedback stabilization.

9) Noise in control systems and stochastic control.

10) Kalman filter.

11) LQG synthesis.

12) Systems with uncertainty and robust design.

13) Introduction to H-infinity robust design.

4. TEACHING METHODS - EVALUATION

DELIVERY	Face to face			
Face-to-face, Distance				
learning, etc.				
USE OF INFORMATION	Use of Google Jamboard and Matlab in Teaching			
AND	• Learning process support through an e-class platform.			
COMMUNICATIONS				
TECHNOLOGY				
Use of ICT in teaching, laboratory				
education, communication with				
students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching	Lectures	39		
are described in detail. Lectures seminars laboratory	Tutorials	26		
practice, fieldwork, study and analysis	Studying and preparation for the	60		
of bibliography, tutorials, placements,	final exam	00		
clinical practice, art workshop,	Course total	125		
interactive teaching, educational	Course total	123		
visits, project, essay writing, artistic				
creativity,				
elc. The student's study hours for each				
learning activity are given as well as				
the hours of non directed study				
according to the principles of the				
ECTS				

STUDENT PERFORMANCE EVALUATION

Description of the evaluation procedure

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, shortanswer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students. 1. The laboratories participate by 30% in the final grade. In order to be examined in theory, the student must have completed all the laboratories and have been successfully examined in them. 2. The main assessment criteria focus on understanding and correlating the knowledge that students gain from the course with other knowledge. Particular emphasis is placed on whether they have developed the ability to apply this knowledge to crop selection and to assess the impact of these changes on the environment. Emphasis is also placed on demonstrating critical ability and justifying the choices they make in each problem. 3. Evaluation is dynamic. It mainly involves problem solving. is done orally or in writing or with a combination of the two, with or without pre-examination on the basic principles of the course, with or without exculpatory advances and with other test or inventive methods, depending on the composition of the dynamics and the needs of the audience. 4. The above are done in the Greek language. For foreign

language students (eg Erasmus students) conducted in English

5. RECOMMENDED LITERATURE

- Βιβλίο [22722697]: Ελεγχος Διεργασιών, Νταουντίδης Π., Μαστρογεωργόπουλος Σπ., Παπαδοπούλου Σημ. <u>Λεπτομέρειες</u>
- Βιβλίο [68369734]: Συστήματα Αυτομάτου Ελέγχου, 2η Έκδοση, Μαλατέστας Παντελής <u>Λεπτομέρειες</u>
- Βιβλίο [68369669]: Συστήματα Αυτομάτου Ελέγχου, Βελώνη Αναστασία, Κανδρής Ξενοφών-Διονύσιος <u>Λεπτομέρειες</u>
- Βιβλίο [59380555]: ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ, Norman S. Nise <u>Λεπτομέρειες</u>
- Βιβλίο [22688051]: Συστήματα Αυτόματου Ελέγχου, Shahian B., Savant J.C. JR., Hostetter G.H., Steafani T.R. <u>Λεπτομέρειες</u>
- Βιβλίο [59396181]: Σύγχρονα Συστήματα Αυτομάτου Ελέγχου, 13η Έκδοση, Dorf Richard C.,Bishop Robert H. <u>Λεπτομέρειες</u>
- Συστήματα Αυτομάτου Ελέγχου, Β.Κυο και F. Golnaraghi, Εκδόσεις Στέλλα Παρίκου και Σία Ο.Ε., 2010.
- Συστήματα Αυτομάτου Ελέγχου, Κ. Ogata, Εκδόσεις Φούντας, 5η έκδοση 2011.