COURSE OUTLINE

1. GENERAL				
SCHOOL	School of Agricultural Sciences			
ACADEMIC UNIT	Agriculture			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	AGRI_EX24 SEMESTER 7 th or 9 th			
COURSE TITLE	Thermal - Cooling Machines for the Preservation of Agricultural Products			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
Lectures		2		
Tutorials		0		
Laboratory		2		
TOTAL		4	5	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	General knowl	ledge		
PREREQUISITE	There are no prerequisite courses.			
COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GreekFor Erasmus students in English			
IS THE COURSE OFFERED TO	Yes			
ERASMUS STUDENTS COURSE WEBSITE (URL)				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
 - Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 - Guidelines for writing Learning Outcomes

At the end of this course, the student will be able to

- Understand the principles of conduction, convection and radiation
- Understand the principle of various heat and refrigeration cycles.
- Understand the refrigeration, refrigerant properties and analyze the design of refrigeration system.
- Understand the principle of psychometric processes and air conditioning.
- Analyze the principle and operation of cold storage plant.
- Apply the knowledge of drying and dehydration in food industries
- Analyze the different drying and dehydration models for various food commodity
- Compute the drying and dehydration behavior for different food commodity
- Select the appropriate dryer for selected food commodity
- Analyze the economic aspects of storage and understand storage condition for various fruits and vegetables under cold and storage system.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary	Respect for difference and multiculturalism
technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical responsibility and
Decision-making	sensitivity to gender issues
Working independently	Criticism and self-criticism
Team work	Production of free, creative and inductive thinking
Working in an international environment	
Working in an interdisciplinary environment	Others
Production of new research ideas	

In general, upon completion of this course the student will have further developed the following general skills (from the list above):

Search, analysis and synthesis of data and information, using the necessary technologies Adaptation to new situations Decision making

Autonomous work Teamwork

Respect for the natural environment Exercise criticism and self-criticism

3. SYLLABUS

- 1. Thermodynamics properties, closed and open system, flow and non-flow processes, gas laws, laws of thermodynamics, internal energy. Application of first law in heating and expansion of gases in non-flow processes. First law applied to steady flow process. Carnot cycle, Carnot theorem.
- 2. Entropy, physical concept of entropy, change of entropy of gases in thermodynamics process. Otto, diesel and dual cycles. Principles of refrigeration, - units, terminology, and air refrigerators working on reverse Carnot cycle and Bell Coleman cycle, open air refrigeration cycle, merit demerit of air refrigeration. Vapour refrigeration-mechanism, P-V, P-S, P-H diagrams, vapour compression cycles, dry and wet compression, super cooling and sub cooling.
- 3. Vapour absorption refrigeration system. Common refrigerants and their properties. Design calculations for refrigeration system. Cold storage plants. Thermodynamic properties of moist air, perfect gas relationship for approximate calculation, adiabatic saturation process, wet bulb temperature and its measurement.
- 4. Psychometric chart and its use, elementary psychometric process. Air conditioning principles –Type and functions of air conditioning, physiological principles in air conditioning, air distribution and duct design methods.
- 5. Fundamentals of design of complete air conditioning systems humidifiers and dehumidifiers cooling load calculations, types of air conditioners applications,
- 6. Food preservation, Domestic refrigerators, commercial refrigerators, method of Food freezing. Study of cold storage for fruits and vegetable, freezing load and time calculations for food materials, study of window air conditioners repair and maintenance of refrigeration and air conditioning systems and chilling or ice making and cold storage plants
- 7. Moisture content and methods for determination, importance of EMC and methods of its determination, EMC curve and EMC model, principle of drying, theory of diffusion, mechanism of drying- falling rate, constant rate, thin layer, deep bed and their analysis, critical moisture content, drying models.
- 8. Calculation of drying air temperature and air flow rate, air pressure within the grain bed, Shred's and Hukill's curve, different methods of drying including puff drying, foam mat drying, freeze drying, etc.
- 9. Study of different types of dryers- performance, energy utilization pattern and efficiency, study of drying and dehydration of agricultural products.
- 10. Types and causes of spoilage in storage, conditions for storage of perishable products, functional requirements of storage, control of temperature and relative humidities inside storage, calculation of refrigeration load; modified atmospheric storage and control of its Environment, air movement inside the storage,
- 11. Storage of grains: destructive agents, respiration of grains, moisture and temperature changes in stored grains; conditioning of environment inside storage through natural ventilation, mechanical ventilation, artificial drying, traditional, improved and modern grain storage

structures, warehouse - design and control of environment

- 12. Storage of cereal grains and their products, storage of seeds, hermetically sealed and air cooled storages refrigerated, controlled atmosphere, modified atmospheric and frozen storages.
- 13. Storage condition for various fruits and vegetables under cold and CAP storage system. Economic, aspects of storage

Lab. Exercises

- 1. Determination of the various components of drying systems
- 2. Determination of the various components of refrigeration systems
- 3. Experiments on working details of a cold storage plant and air conditioning unit
- 4. Experiment on humidifier for the determination of humidifying efficiency- dehumidifying efficiency
- 5. Storage condition for various fruits and vegetables under cold and drying storage system.

4. TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face lectures in the classroom and laboratory		
Face-to-face, Distance			
learning, etc.			
USE OF INFORMATION	• Use of ICT (power point) in Teaching		
AND	• Use of ICT (power point) in Laboratory Training		
COMMUNICATIONS	• Use of ICT in Communication with students (Learning		
TECHNOLOGY	process support through the electronic platform e-class).		
Use of ICT in teaching, laboratory		1 /	
education, communication with students TEACHING METHODS		C	
The manner and methods of teaching	Activity	Semester workload	
are described in detail.	Lectures	26	
Lectures, seminars, laboratory practice,	Laboratory	26	
fieldwork, study and analysis of	Writing short reports of	13	
bibliography, tutorials, placements, clinical practice, art workshop,	laboratory exercises		
interactive teaching, educational	Final Exams	3	
visits, project, essay writing, artistic	Study hours and	57	
creativity,	preparation for the		
etc.	laboratory exercises and the		
The student's study hours for each learning activity are given as well as	final examination		
the hours of non directed study	Course total	125	
according to the principles of the			
ECTS	4. The laboratoriae restining to be 2000 in	the final model to ender to	
STUDENT PERFORMANCE	1. The laboratories participate by 30% in the final grade. In order to		
EVALUATION	be examined in theory, the student must have completed all the		
Description of the evaluation procedure	laboratories and have been successfully	examined in them.	
Language of evaluation, methods of			
evaluation, summative or conclusive, multiple	2. The laboratories participate by 30% in	the final grade. In order to	
choice questionnaires, short-answer	be examined in theory, the student must have completed all the		
questions,	laboratories and have been successfully examined in them.		
open-ended questions, problem solving,			
written work, essay/report, oral examination,	3. The main assessment criteria focus on	understanding and	
public	_		
presentation, laboratory work, clinical	correlating the knowledge that students gain from the course with		
examination of patient, art interpretation,	other knowledge. Particular emphasis is placed on whether they		
other	have developed the ability to apply this knowledge to crop		
Specifically-defined evaluation criteria	selection and to assess the impact of these changes on the		
are	environment. Emphasis is also placed on	-	
given, and if and where they are accessible to	ability and justifying the choices they ma	-	
students.	ability and justifying the choices they fild	ike in each problem.	
	A Evaluation is dynamic. It mainly involv	es problem solving is dono	
	4. Evaluation is dynamic. It mainly involves problem solving. is done		
	orally or in writing or with a combination of the two, with or		
	without pre-examination on the basic pr	inciples of the course, with	

or without exculpatory advances and with other test or inventive methods, depending on the composition of the dynamics and the needs of the audience.
5. The above are done in the Greek language. For foreign language students (eg Erasmus students) conducted in English

5. RECOMMENDED LITERATURE

Suggested bibliography:

- ΘΕΡΜΑΝΣΗ -ΚΛΙΜΑΤΙΣΜΟΣ (ΕΠΙΤΟΜΟ) Κωδικός Βιβλίου στον Εύδοξο: 13169965 Έκδοση: 3/2002 Συγγραφείς: Β. ΣΕΛΛΟΥΝΤΟΣ ISBN: 9608257042 Τύπος: Σύγγραμμα Διαθέτης (Εκδότης): ΣΕΛΚΑ - 4Μ ΕΠΕ <u>https://service.eudoxus.gr/search/#a/id:13169965/0</u>
- Η τεχνολογία της ψύξης Κωδικός Βιβλίου στον Εύδοξο: 22829 Έκδοση: 1η έκδ./2007 Συγγραφείς: Αλέξης Γιώργος Κ. ISBN: 9789603517290 Τύπος: Σύγγραμμα Διαθέτης (Εκδότης): ΕΚΔΟΣΕΙΣ ΣΤΑΜΟΥΛΗ ΑΕ

-Complementary bibliography:

 ΘΕΡΜΑΝΣΗ - ΨΥΞΗ - ΚΛΙΜΑΤΙΣΜΟΣ Κωδικός Βιβλίου στον Εύδοξο: 59303648 Έκδοση: 1/2016 Συγγραφείς: ΔΗΜΗΤΡΙΟΣ ΚΑΤΣΑΠΡΑΚΑΚΗΣ ISBN: 978-960-603-339-1 Τύπος: Ηλεκτρονικό Βιβλίο Διαθέτης (Εκδότης): Ελληνικά Ακαδημαϊκά Ηλεκτρονικά Συγγράμματα και Βοηθήματα - Αποθετήριο "Κάλλιπος"